Pathway for Biodegrading Microcystin-YR by Sphingopyxis sp. USTB-05
نویسندگان
چکیده
Harmful cyanobacterial blooms in waters have become a global environmental problem, this mainly due to the production and release of various microalgal toxins, in which microcystins (MCs) are distributed widely. Here, we focused on the study of a typical form of microcystins called microcystin-YR (MC-YR). It was found that initial 14.8 mg/L of MC-YR could be completely eliminated within 10 hr by the crude enzymes (CEs) of Sphingopyxis sp. USTB-05, a promising bacterial strain we isolated and identified in our previous study. During the enzymatic biodegradation of MC-YR with time course, the peaks of two intermediate and two final products were observed on the profiles of HPLC at the wavelengths of 238 nm and 230 nm, respectively. Based on the analysis of m/z ratios of MC-YR and its four products by LC-MS/MS, we suggested that at least four enzymes were involved in the biodegradation of MC-YR by Sphingopyxis sp. USTB-05. The first enzyme microcystinase converted cyclic MC-YR to linear MC-YR as the first product. Then the second enzyme serine protease was found to cleave the target peptide bond between alanine (Ala) and tyrosine (Tyr) of linearized MC-YR, producing a tetrapeptide and a tripeptide as second products, which were Adda-Glu-Mdha-Ala and Tyr-Masp-Arg, respectively. Next, the third enzyme peptidase converted the tetrapeptide of Adda-Glu-Mdha-Ala to Adda. And the fourth enzyme cleaved the tripeptide of Tyr-Masp-Arg to produce Tyr and dipeptide (Masp-Arg), which has never been reported. These findings will help us better understand the biodegradation pathway of MC-YR by Sphingopyxis sp. USTB-05.
منابع مشابه
Pathway for Biodegrading Nodularin (NOD) by Sphingopyxis sp. USTB-05.
Nodularin (NOD) is greatly produced by Nodularia spumigena and released into the environment when toxic cyanobacterial blooms happened in natural water body, which is seriously harmful to human and animals. The promising bacterial strain of Sphingopyxis sp. USTB-05 was found to have an ability in biodegrading NOD. Initially, 11.6 mg/L of NOD could be completely eliminated within 72 h by whole c...
متن کاملMicrobial biodegradation of microcystin-RR by bacterium Sphingopyxis sp. USTB-05.
A strain, USTB-05, isolated from Lake Dianchi, China, degraded the cyanobacterial toxin microcystin-RR (MC-RR) at the rate of 16.7 mg/L per day. Analysis of 16S rDNA sequence showed that the strain was Sphingopyxis sp. Enzymatic degradation pathways for MC-RR by Sphingopyxis sp. USTB-05 were identified. Adda-Arg peptide bond of MC-RR was cleaved and then a hydrogen and a hydroxyl were combined ...
متن کاملWhole-Genome Sequence of the Microcystin-Degrading Bacterium Sphingopyxis sp. Strain C-1
This report describes the whole-genome sequence of an alkalitolerant microcystin-degrading bacterium, Sphingopyxis sp. strain C-1, isolated from a lake in China.
متن کاملA Novel and Native Microcystin-Degrading Bacterium of Sphingopyxis sp. Isolated from Lake Taihu
A native, highly efficient microcystin-LR (MC-LR)-degrading bacterium named a7 was isolated from Lake Taihu and identified as Sphingopyxis sp. by 16S rDNA sequence analysis. The strain a7 could totally degrade MC-LR at a rate of 3.33 mg/(L•h), as detected by high-performance liquid chromatography (HPLC). The mlrA, mlrC, and mlrD genes were detected in the strain a7 by sequence analysis. Tetrape...
متن کاملCharacteristics of a Microcystin-Degrading Bacterium under Alkaline Environmental Conditions
The pH of the water associated with toxic blooms of cyanobacteria is typically in the alkaline range; however, previously only microcystin-degrading bacteria growing in neutral pH conditions have been isolated. Therefore, we sought to isolate and characterize an alkali-tolerant microcystin-degrading bacterium from a water bloom using microcystin-LR. Analysis of the 16S rRNA gene sequence reveal...
متن کامل